Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (e^x-e^2)/(-2+x)
Limit of (-2*x^2+4*x^3+5*x)/(3*x^2+7*x)
Limit of (-asin(x)+2*x)/(2*x+atan(x))
Limit of (-9+x^2)/(-27+x^3)
Integral of d{x}
:
cos(x)/x^2
Derivative of
:
cos(x)/x^2
Graphing y =
:
cos(x)/x^2
Identical expressions
cos(x)/x^ two
co sinus of e of (x) divide by x squared
co sinus of e of (x) divide by x to the power of two
cos(x)/x2
cosx/x2
cos(x)/x²
cos(x)/x to the power of 2
cosx/x^2
cos(x) divide by x^2
Similar expressions
2*log(cos(x))/x^2
cosx/x^2
Limit of the function
/
cos(x)/x^2
Limit of the function cos(x)/x^2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/cos(x)\ lim |------| x->oo| 2 | \ x /
lim
x
→
∞
(
cos
(
x
)
x
2
)
\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)}}{x^{2}}\right)
x
→
∞
lim
(
x
2
cos
(
x
)
)
Limit(cos(x)/x^2, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-100
100
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
cos
(
x
)
x
2
)
=
0
\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)}}{x^{2}}\right) = 0
x
→
∞
lim
(
x
2
cos
(
x
)
)
=
0
lim
x
→
0
−
(
cos
(
x
)
x
2
)
=
∞
\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)}}{x^{2}}\right) = \infty
x
→
0
−
lim
(
x
2
cos
(
x
)
)
=
∞
More at x→0 from the left
lim
x
→
0
+
(
cos
(
x
)
x
2
)
=
∞
\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{x^{2}}\right) = \infty
x
→
0
+
lim
(
x
2
cos
(
x
)
)
=
∞
More at x→0 from the right
lim
x
→
1
−
(
cos
(
x
)
x
2
)
=
cos
(
1
)
\lim_{x \to 1^-}\left(\frac{\cos{\left(x \right)}}{x^{2}}\right) = \cos{\left(1 \right)}
x
→
1
−
lim
(
x
2
cos
(
x
)
)
=
cos
(
1
)
More at x→1 from the left
lim
x
→
1
+
(
cos
(
x
)
x
2
)
=
cos
(
1
)
\lim_{x \to 1^+}\left(\frac{\cos{\left(x \right)}}{x^{2}}\right) = \cos{\left(1 \right)}
x
→
1
+
lim
(
x
2
cos
(
x
)
)
=
cos
(
1
)
More at x→1 from the right
lim
x
→
−
∞
(
cos
(
x
)
x
2
)
=
0
\lim_{x \to -\infty}\left(\frac{\cos{\left(x \right)}}{x^{2}}\right) = 0
x
→
−
∞
lim
(
x
2
cos
(
x
)
)
=
0
More at x→-oo
The graph