Mister Exam

Other calculators:


cos(x)/(1-sin(x))

Limit of the function cos(x)/(1-sin(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  cos(x)  \
 lim |----------|
x->oo\1 - sin(x)/
$$\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right)$$
Limit(cos(x)/(1 - sin(x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right) = \left\langle -\infty, \infty\right\rangle$$
$$\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right) = \frac{\cos{\left(1 \right)}}{- \sin{\left(1 \right)} + 1}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right) = \frac{\cos{\left(1 \right)}}{- \sin{\left(1 \right)} + 1}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
The graph
Limit of the function cos(x)/(1-sin(x))