$$\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right) = \left\langle -\infty, \infty\right\rangle$$
$$\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right) = 1$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right) = 1$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right) = \frac{\cos{\left(1 \right)}}{- \sin{\left(1 \right)} + 1}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right) = \frac{\cos{\left(1 \right)}}{- \sin{\left(1 \right)} + 1}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\cos{\left(x \right)}}{- \sin{\left(x \right)} + 1}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo