Mister Exam

Other calculators:


cos((1+x)/x^3)

Limit of the function cos((1+x)/x^3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /1 + x\
 lim cos|-----|
x->oo   |   3 |
        \  x  /
$$\lim_{x \to \infty} \cos{\left(\frac{x + 1}{x^{3}} \right)}$$
Limit(cos((1 + x)/x^3), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \cos{\left(\frac{x + 1}{x^{3}} \right)} = 1$$
$$\lim_{x \to 0^-} \cos{\left(\frac{x + 1}{x^{3}} \right)} = \left\langle -1, 1\right\rangle$$
More at x→0 from the left
$$\lim_{x \to 0^+} \cos{\left(\frac{x + 1}{x^{3}} \right)} = \left\langle -1, 1\right\rangle$$
More at x→0 from the right
$$\lim_{x \to 1^-} \cos{\left(\frac{x + 1}{x^{3}} \right)} = \cos{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \cos{\left(\frac{x + 1}{x^{3}} \right)} = \cos{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \cos{\left(\frac{x + 1}{x^{3}} \right)} = 1$$
More at x→-oo
The graph
Limit of the function cos((1+x)/x^3)