$$\lim_{x \to 0^-} \cos^{\cot{\left(x \right)}}{\left(4 x \right)} = 1$$
More at x→0 from the left$$\lim_{x \to 0^+} \cos^{\cot{\left(x \right)}}{\left(4 x \right)} = 1$$
$$\lim_{x \to \infty} \cos^{\cot{\left(x \right)}}{\left(4 x \right)}$$
More at x→oo$$\lim_{x \to 1^-} \cos^{\cot{\left(x \right)}}{\left(4 x \right)} = \left(- \cos{\left(4 \right)}\right)^{\frac{1}{\tan{\left(1 \right)}}} e^{\frac{i \pi}{\tan{\left(1 \right)}}}$$
More at x→1 from the left$$\lim_{x \to 1^+} \cos^{\cot{\left(x \right)}}{\left(4 x \right)} = \left(- \cos{\left(4 \right)}\right)^{\frac{1}{\tan{\left(1 \right)}}} e^{\frac{i \pi}{\tan{\left(1 \right)}}}$$
More at x→1 from the right$$\lim_{x \to -\infty} \cos^{\cot{\left(x \right)}}{\left(4 x \right)}$$
More at x→-oo