Mister Exam

Other calculators:


cos(4*x)^cot(x)

Limit of the function cos(4*x)^cot(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        cot(x)     
 lim cos      (4*x)
x->0+              
$$\lim_{x \to 0^+} \cos^{\cot{\left(x \right)}}{\left(4 x \right)}$$
Limit(cos(4*x)^cot(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
        cot(x)     
 lim cos      (4*x)
x->0+              
$$\lim_{x \to 0^+} \cos^{\cot{\left(x \right)}}{\left(4 x \right)}$$
1
$$1$$
= 1.0
        cot(x)     
 lim cos      (4*x)
x->0-              
$$\lim_{x \to 0^-} \cos^{\cot{\left(x \right)}}{\left(4 x \right)}$$
1
$$1$$
= 1.0
= 1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \cos^{\cot{\left(x \right)}}{\left(4 x \right)} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \cos^{\cot{\left(x \right)}}{\left(4 x \right)} = 1$$
$$\lim_{x \to \infty} \cos^{\cot{\left(x \right)}}{\left(4 x \right)}$$
More at x→oo
$$\lim_{x \to 1^-} \cos^{\cot{\left(x \right)}}{\left(4 x \right)} = \left(- \cos{\left(4 \right)}\right)^{\frac{1}{\tan{\left(1 \right)}}} e^{\frac{i \pi}{\tan{\left(1 \right)}}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \cos^{\cot{\left(x \right)}}{\left(4 x \right)} = \left(- \cos{\left(4 \right)}\right)^{\frac{1}{\tan{\left(1 \right)}}} e^{\frac{i \pi}{\tan{\left(1 \right)}}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \cos^{\cot{\left(x \right)}}{\left(4 x \right)}$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function cos(4*x)^cot(x)