Mister Exam

Limit of the function b/a

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /b\
 lim |-|
b->0+\a/
$$\lim_{b \to 0^+}\left(\frac{b}{a}\right)$$
Limit(b/a, b, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
One‐sided limits [src]
     /b\
 lim |-|
b->0+\a/
$$\lim_{b \to 0^+}\left(\frac{b}{a}\right)$$
0
$$0$$
     /b\
 lim |-|
b->0-\a/
$$\lim_{b \to 0^-}\left(\frac{b}{a}\right)$$
0
$$0$$
0
Rapid solution [src]
0
$$0$$
Other limits b→0, -oo, +oo, 1
$$\lim_{b \to 0^-}\left(\frac{b}{a}\right) = 0$$
More at b→0 from the left
$$\lim_{b \to 0^+}\left(\frac{b}{a}\right) = 0$$
$$\lim_{b \to \infty}\left(\frac{b}{a}\right) = \infty \operatorname{sign}{\left(\frac{1}{a} \right)}$$
More at b→oo
$$\lim_{b \to 1^-}\left(\frac{b}{a}\right) = \frac{1}{a}$$
More at b→1 from the left
$$\lim_{b \to 1^+}\left(\frac{b}{a}\right) = \frac{1}{a}$$
More at b→1 from the right
$$\lim_{b \to -\infty}\left(\frac{b}{a}\right) = - \infty \operatorname{sign}{\left(\frac{1}{a} \right)}$$
More at b→-oo