$$\lim_{t \to \infty} \operatorname{atan}{\left(t \right)} = \frac{\pi}{2}$$ $$\lim_{t \to 0^-} \operatorname{atan}{\left(t \right)} = 0$$ More at t→0 from the left $$\lim_{t \to 0^+} \operatorname{atan}{\left(t \right)} = 0$$ More at t→0 from the right $$\lim_{t \to 1^-} \operatorname{atan}{\left(t \right)} = \frac{\pi}{4}$$ More at t→1 from the left $$\lim_{t \to 1^+} \operatorname{atan}{\left(t \right)} = \frac{\pi}{4}$$ More at t→1 from the right $$\lim_{t \to -\infty} \operatorname{atan}{\left(t \right)} = - \frac{\pi}{2}$$ More at t→-oo