Mister Exam

Limit of the function atan(t)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim atan(t)
t->oo       
$$\lim_{t \to \infty} \operatorname{atan}{\left(t \right)}$$
Limit(atan(t), t, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
pi
--
2 
$$\frac{\pi}{2}$$
Other limits t→0, -oo, +oo, 1
$$\lim_{t \to \infty} \operatorname{atan}{\left(t \right)} = \frac{\pi}{2}$$
$$\lim_{t \to 0^-} \operatorname{atan}{\left(t \right)} = 0$$
More at t→0 from the left
$$\lim_{t \to 0^+} \operatorname{atan}{\left(t \right)} = 0$$
More at t→0 from the right
$$\lim_{t \to 1^-} \operatorname{atan}{\left(t \right)} = \frac{\pi}{4}$$
More at t→1 from the left
$$\lim_{t \to 1^+} \operatorname{atan}{\left(t \right)} = \frac{\pi}{4}$$
More at t→1 from the right
$$\lim_{t \to -\infty} \operatorname{atan}{\left(t \right)} = - \frac{\pi}{2}$$
More at t→-oo
The graph
Limit of the function atan(t)