Mister Exam

Other calculators:


asin(x)^2

Limit of the function asin(x)^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         2   
 lim asin (x)
x->0+        
$$\lim_{x \to 0^+} \operatorname{asin}^{2}{\left(x \right)}$$
Limit(asin(x)^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
         2   
 lim asin (x)
x->0+        
$$\lim_{x \to 0^+} \operatorname{asin}^{2}{\left(x \right)}$$
0
$$0$$
= -4.64816349178061e-30
         2   
 lim asin (x)
x->0-        
$$\lim_{x \to 0^-} \operatorname{asin}^{2}{\left(x \right)}$$
0
$$0$$
= -4.64816349178061e-30
= -4.64816349178061e-30
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \operatorname{asin}^{2}{\left(x \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \operatorname{asin}^{2}{\left(x \right)} = 0$$
$$\lim_{x \to \infty} \operatorname{asin}^{2}{\left(x \right)} = -\infty$$
More at x→oo
$$\lim_{x \to 1^-} \operatorname{asin}^{2}{\left(x \right)} = \frac{\pi^{2}}{4}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \operatorname{asin}^{2}{\left(x \right)} = \frac{\pi^{2}}{4}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \operatorname{asin}^{2}{\left(x \right)} = -\infty$$
More at x→-oo
Numerical answer [src]
-4.64816349178061e-30
-4.64816349178061e-30
The graph
Limit of the function asin(x)^2