Mister Exam

Other calculators:


asin(x)*cot(x)

Limit of the function asin(x)*cot(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (asin(x)*cot(x))
x->0+                
limx0+(cot(x)asin(x))\lim_{x \to 0^+}\left(\cot{\left(x \right)} \operatorname{asin}{\left(x \right)}\right)
Limit(asin(x)*cot(x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+asin(x)=0\lim_{x \to 0^+} \operatorname{asin}{\left(x \right)} = 0
and limit for the denominator is
limx0+1cot(x)=0\lim_{x \to 0^+} \frac{1}{\cot{\left(x \right)}} = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(cot(x)asin(x))\lim_{x \to 0^+}\left(\cot{\left(x \right)} \operatorname{asin}{\left(x \right)}\right)
=
limx0+(ddxasin(x)ddx1cot(x))\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \operatorname{asin}{\left(x \right)}}{\frac{d}{d x} \frac{1}{\cot{\left(x \right)}}}\right)
=
limx0+(11x2(1+1cot2(x)))\lim_{x \to 0^+}\left(\frac{1}{\sqrt{1 - x^{2}} \left(1 + \frac{1}{\cot^{2}{\left(x \right)}}\right)}\right)
=
limx0+(11x2(1+1cot2(x)))\lim_{x \to 0^+}\left(\frac{1}{\sqrt{1 - x^{2}} \left(1 + \frac{1}{\cot^{2}{\left(x \right)}}\right)}\right)
=
11
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-10100.81.1
One‐sided limits [src]
 lim (asin(x)*cot(x))
x->0+                
limx0+(cot(x)asin(x))\lim_{x \to 0^+}\left(\cot{\left(x \right)} \operatorname{asin}{\left(x \right)}\right)
1
11
= 1.0
 lim (asin(x)*cot(x))
x->0-                
limx0(cot(x)asin(x))\lim_{x \to 0^-}\left(\cot{\left(x \right)} \operatorname{asin}{\left(x \right)}\right)
1
11
= 1.0
= 1.0
Rapid solution [src]
1
11
Other limits x→0, -oo, +oo, 1
limx0(cot(x)asin(x))=1\lim_{x \to 0^-}\left(\cot{\left(x \right)} \operatorname{asin}{\left(x \right)}\right) = 1
More at x→0 from the left
limx0+(cot(x)asin(x))=1\lim_{x \to 0^+}\left(\cot{\left(x \right)} \operatorname{asin}{\left(x \right)}\right) = 1
limx(cot(x)asin(x))\lim_{x \to \infty}\left(\cot{\left(x \right)} \operatorname{asin}{\left(x \right)}\right)
More at x→oo
limx1(cot(x)asin(x))=π2tan(1)\lim_{x \to 1^-}\left(\cot{\left(x \right)} \operatorname{asin}{\left(x \right)}\right) = \frac{\pi}{2 \tan{\left(1 \right)}}
More at x→1 from the left
limx1+(cot(x)asin(x))=π2tan(1)\lim_{x \to 1^+}\left(\cot{\left(x \right)} \operatorname{asin}{\left(x \right)}\right) = \frac{\pi}{2 \tan{\left(1 \right)}}
More at x→1 from the right
limx(cot(x)asin(x))\lim_{x \to -\infty}\left(\cot{\left(x \right)} \operatorname{asin}{\left(x \right)}\right)
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function asin(x)*cot(x)