Mister Exam

Other calculators:


asin(x)/x

Limit of the function asin(x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /asin(x)\
 lim |-------|
x->0+\   x   /
$$\lim_{x \to 0^+}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right)$$
Limit(asin(x)/x, x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right)$$
Do replacement
$$u = \operatorname{asin}{\left(x \right)}$$
$$x = \sin{\left(u \right)}$$
we get
$$\lim_{x \to 0^+}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right) = \lim_{u \to 0^+}\left(\frac{\operatorname{asin}{\left(\frac{\sin{\left(u \right)}}{1} \right)}}{1^{-1} \sin{\left(u \right)}}\right)$$
=
$$\lim_{u \to 0^+}\left(\frac{\operatorname{asin}{\left(\sin{\left(u \right)} \right)}}{\sin{\left(u \right)}}\right) = \lim_{u \to 0^+}\left(\frac{u}{\sin{\left(u \right)}}\right)$$
=
$$\lim_{u \to 0^+} \frac{1}{\frac{1}{u} \sin{\left(u \right)}}$$
             /sin(u)\  
= 1 / (  lim |------| )
        u->0+\  u   /  

The limit
$$\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)$$
is first remarkable limit, is equal to 1.

The final answer:
$$\lim_{x \to 0^+}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right) = 1$$
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \operatorname{asin}{\left(x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \operatorname{asin}{\left(x \right)}}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to 0^+} \frac{1}{\sqrt{1 - x^{2}}}$$
=
$$\lim_{x \to 0^+} \frac{1}{\sqrt{1 - x^{2}}}$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /asin(x)\
 lim |-------|
x->0+\   x   /
$$\lim_{x \to 0^+}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right)$$
1
$$1$$
= 1.0
     /asin(x)\
 lim |-------|
x->0-\   x   /
$$\lim_{x \to 0^-}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right)$$
1
$$1$$
= 1.0
= 1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right) = \frac{\pi}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right) = \frac{\pi}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right)$$
More at x→-oo
Rapid solution [src]
1
$$1$$
Numerical answer [src]
1.0
1.0
The graph
Limit of the function asin(x)/x