Mister Exam

Other calculators:


acos(x)

Limit of the function acos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  acos(x)
x->-oo       
limxacos(x)\lim_{x \to -\infty} \operatorname{acos}{\left(x \right)}
Limit(acos(x), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100.05.0
Rapid solution [src]
-oo*I
i- \infty i
Other limits x→0, -oo, +oo, 1
limxacos(x)=i\lim_{x \to -\infty} \operatorname{acos}{\left(x \right)} = - \infty i
limxacos(x)=i\lim_{x \to \infty} \operatorname{acos}{\left(x \right)} = \infty i
More at x→oo
limx0acos(x)=π2\lim_{x \to 0^-} \operatorname{acos}{\left(x \right)} = \frac{\pi}{2}
More at x→0 from the left
limx0+acos(x)=π2\lim_{x \to 0^+} \operatorname{acos}{\left(x \right)} = \frac{\pi}{2}
More at x→0 from the right
limx1acos(x)=0\lim_{x \to 1^-} \operatorname{acos}{\left(x \right)} = 0
More at x→1 from the left
limx1+acos(x)=0\lim_{x \to 1^+} \operatorname{acos}{\left(x \right)} = 0
More at x→1 from the right
The graph
Limit of the function acos(x)