$$\lim_{x \to 0^-} \operatorname{acos}{\left(2 x \right)} = \frac{\pi}{2}$$
More at x→0 from the left$$\lim_{x \to 0^+} \operatorname{acos}{\left(2 x \right)} = \frac{\pi}{2}$$
$$\lim_{x \to \infty} \operatorname{acos}{\left(2 x \right)} = \infty i$$
More at x→oo$$\lim_{x \to 1^-} \operatorname{acos}{\left(2 x \right)} = i \log{\left(\sqrt{3} + 2 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+} \operatorname{acos}{\left(2 x \right)} = i \log{\left(\sqrt{3} + 2 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty} \operatorname{acos}{\left(2 x \right)} = - \infty i$$
More at x→-oo