Mister Exam

Other calculators:


acos(2*x)

Limit of the function acos(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim acos(2*x)
x->0+         
$$\lim_{x \to 0^+} \operatorname{acos}{\left(2 x \right)}$$
Limit(acos(2*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
pi
--
2 
$$\frac{\pi}{2}$$
One‐sided limits [src]
 lim acos(2*x)
x->0+         
$$\lim_{x \to 0^+} \operatorname{acos}{\left(2 x \right)}$$
pi
--
2 
$$\frac{\pi}{2}$$
= 1.5707963267949
 lim acos(2*x)
x->0-         
$$\lim_{x \to 0^-} \operatorname{acos}{\left(2 x \right)}$$
pi
--
2 
$$\frac{\pi}{2}$$
= 1.5707963267949
= 1.5707963267949
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \operatorname{acos}{\left(2 x \right)} = \frac{\pi}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \operatorname{acos}{\left(2 x \right)} = \frac{\pi}{2}$$
$$\lim_{x \to \infty} \operatorname{acos}{\left(2 x \right)} = \infty i$$
More at x→oo
$$\lim_{x \to 1^-} \operatorname{acos}{\left(2 x \right)} = i \log{\left(\sqrt{3} + 2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \operatorname{acos}{\left(2 x \right)} = i \log{\left(\sqrt{3} + 2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \operatorname{acos}{\left(2 x \right)} = - \infty i$$
More at x→-oo
Numerical answer [src]
1.5707963267949
1.5707963267949
The graph
Limit of the function acos(2*x)