Mister Exam

Other calculators:

Limit of the function a^x-1/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / x   1\
 lim |a  - -|
x->0+\     x/
$$\lim_{x \to 0^+}\left(a^{x} - \frac{1}{x}\right)$$
Limit(a^x - 1/x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(a^{x} - \frac{1}{x}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(a^{x} - \frac{1}{x}\right) = -\infty$$
$$\lim_{x \to \infty}\left(a^{x} - \frac{1}{x}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(a^{x} - \frac{1}{x}\right) = a - 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(a^{x} - \frac{1}{x}\right) = a - 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(a^{x} - \frac{1}{x}\right)$$
More at x→-oo
One‐sided limits [src]
     / x   1\
 lim |a  - -|
x->0+\     x/
$$\lim_{x \to 0^+}\left(a^{x} - \frac{1}{x}\right)$$
-oo
$$-\infty$$
     / x   1\
 lim |a  - -|
x->0-\     x/
$$\lim_{x \to 0^-}\left(a^{x} - \frac{1}{x}\right)$$
oo
$$\infty$$
oo