Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of 1/(sqrt(4-9x^2)) Integral of 1/(sqrt(4-9x^2))
  • Integral of sqrt(x^2+6)
  • Integral of sqrt(arctg(x))
  • Integral of sqrt((6-x)/(x-14))
  • Identical expressions

  • (zero . two hundred and ninety-one -x* zero . one hundred and sixty-nine ^ two)*x^ one
  • (0.291 minus x multiply by 0.169 squared ) multiply by x to the power of 1
  • (zero . two hundred and ninety minus one minus x multiply by zero . one hundred and sixty minus nine to the power of two) multiply by x to the power of one
  • (0.291-x*0.1692)*x1
  • 0.291-x*0.1692*x1
  • (0.291-x*0.169²)*x^1
  • (0.291-x*0.169 to the power of 2)*x to the power of 1
  • (0.291-x0.169^2)x^1
  • (0.291-x0.1692)x1
  • 0.291-x0.1692x1
  • 0.291-x0.169^2x^1
  • (0.291-x*0.169^2)*x^1dx
  • Similar expressions

  • (0.291+x*0.169^2)*x^1

Integral of (0.291-x*0.169^2)*x^1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  861                         
  ---                         
  500                         
   /                          
  |                           
  |   /               2\      
  |   |291      /169 \ |  1   
  |   |---- - x*|----| |*x  dx
  |   \1000     \1000/ /      
  |                           
 /                            
-861                          
-----                         
 500                          
$$\int\limits_{- \frac{861}{500}}^{\frac{861}{500}} x^{1} \left(- \left(\frac{169}{1000}\right)^{2} x + \frac{291}{1000}\right)\, dx$$
Integral((291/1000 - x*(169/1000)^2)*x^1, (x, -861/500, 861/500))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                
 |                                                 
 | /               2\                    3        2
 | |291      /169 \ |  1          28561*x    291*x 
 | |---- - x*|----| |*x  dx = C - -------- + ------
 | \1000     \1000/ /             3000000     2000 
 |                                                 
/                                                  
$$\int x^{1} \left(- \left(\frac{169}{1000}\right)^{2} x + \frac{291}{1000}\right)\, dx = C - \frac{28561 x^{3}}{3000000} + \frac{291 x^{2}}{2000}$$
The graph
The answer [src]
-6076613426247 
---------------
 62500000000000
$$- \frac{6076613426247}{62500000000000}$$
=
=
-6076613426247 
---------------
 62500000000000
$$- \frac{6076613426247}{62500000000000}$$
-6076613426247/62500000000000
Numerical answer [src]
-0.097225814819952
-0.097225814819952

    Use the examples entering the upper and lower limits of integration.