Integral of z-1/(x*y*z^2) dz
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of zn is n+1zn+1 when n=−1:
∫zdz=2z2
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−z2xy1)dz=−∫z2xy1dz
-
The integral of z2+11 is xy∞~atan(∞~z).
So, the result is: xy∞~atan(∞~z)
The result is: 2z2+xy∞~atan(∞~z)
-
Add the constant of integration:
2z2+xy∞~atan(∞~z)+constant
The answer is:
2z2+xy∞~atan(∞~z)+constant
The answer (Indefinite)
[src]
/
| 2
| / 1 \ z zoo*atan(zoo*z)
| |z - ------| dz = C + -- + ---------------
| | 2| 2 x*y
| \ x*y*z /
|
/
∫(z−z2xy1)dz=C+2z2+xy∞~atan(∞~z)
2
1 x*y*z
- + ------
/ 1 \ z 2
- oo*sign|---| + ----------
\x*y/ x*y
−∞sign(xy1)+xy2xyz2+z1
=
2
1 x*y*z
- + ------
/ 1 \ z 2
- oo*sign|---| + ----------
\x*y/ x*y
−∞sign(xy1)+xy2xyz2+z1
-oo*sign(1/(x*y)) + (1/z + x*y*z^2/2)/(x*y)
Use the examples entering the upper and lower limits of integration.