Mister Exam

Integral of yln(x) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___           
 \/ x            
   /             
  |              
  |   y*log(x) dy
  |              
 /               
 1               
 -               
 x               
$$\int\limits_{\frac{1}{x}}^{\sqrt{x}} y \log{\left(x \right)}\, dy$$
Integral(y*log(x), (y, 1/x, sqrt(x)))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of is when :

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                   2       
 |                   y *log(x)
 | y*log(x) dy = C + ---------
 |                       2    
/                             
$$\int y \log{\left(x \right)}\, dy = C + \frac{y^{2} \log{\left(x \right)}}{2}$$
The answer [src]
x*log(x)   log(x)
-------- - ------
   2           2 
            2*x  
$$\frac{x \log{\left(x \right)}}{2} - \frac{\log{\left(x \right)}}{2 x^{2}}$$
=
=
x*log(x)   log(x)
-------- - ------
   2           2 
            2*x  
$$\frac{x \log{\left(x \right)}}{2} - \frac{\log{\left(x \right)}}{2 x^{2}}$$
x*log(x)/2 - log(x)/(2*x^2)

    Use the examples entering the upper and lower limits of integration.