Mister Exam

Other calculators

Integral of y(x^2+y^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    / 2    2\   
 |  y*\x  + y / dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} y \left(x^{2} + y^{2}\right)\, dx$$
Integral(y*(x^2 + y^2), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                        / 3       \
 |   / 2    2\            |x       2|
 | y*\x  + y / dx = C + y*|-- + x*y |
 |                        \3        /
/                                    
$$\int y \left(x^{2} + y^{2}\right)\, dx = C + y \left(\frac{x^{3}}{3} + x y^{2}\right)$$
The answer [src]
 3   y
y  + -
     3
$$y^{3} + \frac{y}{3}$$
=
=
 3   y
y  + -
     3
$$y^{3} + \frac{y}{3}$$
y^3 + y/3

    Use the examples entering the upper and lower limits of integration.