Mister Exam

Integral of y(x+y) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x            
 1 - -            
     2            
   /              
  |               
  |   y*(x + y) dy
  |               
 /                
 0                
$$\int\limits_{0}^{1 - \frac{x}{2}} y \left(x + y\right)\, dy$$
Integral(y*(x + y), (y, 0, 1 - x/2))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of is when :

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                    3      2
 |                    y    x*y 
 | y*(x + y) dy = C + -- + ----
 |                    3     2  
/                              
$$\int y \left(x + y\right)\, dy = C + \frac{x y^{2}}{2} + \frac{y^{3}}{3}$$
The answer [src]
       3            2
/    x\      /    x\ 
|1 - -|    x*|1 - -| 
\    2/      \    2/ 
-------- + ----------
   3           2     
$$\frac{x \left(1 - \frac{x}{2}\right)^{2}}{2} + \frac{\left(1 - \frac{x}{2}\right)^{3}}{3}$$
=
=
       3            2
/    x\      /    x\ 
|1 - -|    x*|1 - -| 
\    2/      \    2/ 
-------- + ----------
   3           2     
$$\frac{x \left(1 - \frac{x}{2}\right)^{2}}{2} + \frac{\left(1 - \frac{x}{2}\right)^{3}}{3}$$
(1 - x/2)^3/3 + x*(1 - x/2)^2/2

    Use the examples entering the upper and lower limits of integration.