1 / | | x | y dx | / 0
Integral(y^x, (x, 0, 1))
PiecewiseRule(subfunctions=[(ExpRule(base=y, exp=x, context=y**x, symbol=x), Ne(log(y), 0)), (ConstantRule(constant=1, context=1, symbol=x), True)], context=y**x, symbol=x)
Add the constant of integration:
The answer is:
/ // x \ | || y | | x ||------ for log(y) != 0| | y dx = C + |
/ 1 y |- ------ + ------ for Or(And(y >= 0, y < 1), y > 1) < log(y) log(y) | \ 1 otherwise
=
/ 1 y |- ------ + ------ for Or(And(y >= 0, y < 1), y > 1) < log(y) log(y) | \ 1 otherwise
Piecewise((-1/log(y) + y/log(y), (y > 1)∨((y >= 0)∧(y < 1))), (1, True))
Use the examples entering the upper and lower limits of integration.