1 - z / | | / 2 2\ | \y + z / dy | / 0
Integral(y^2 + z^2, (y, 0, 1 - z))
Integrate term-by-term:
The integral of is when :
The integral of a constant is the constant times the variable of integration:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3 | / 2 2\ y 2 | \y + z / dy = C + -- + y*z | 3 /
3 (1 - z) 2 -------- + z *(1 - z) 3
=
3 (1 - z) 2 -------- + z *(1 - z) 3
(1 - z)^3/3 + z^2*(1 - z)
Use the examples entering the upper and lower limits of integration.