Mister Exam

Other calculators

Integral of y^2+z^2 dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1 - z            
   /              
  |               
  |   / 2    2\   
  |   \y  + z / dy
  |               
 /                
 0                
$$\int\limits_{0}^{1 - z} \left(y^{2} + z^{2}\right)\, dy$$
Integral(y^2 + z^2, (y, 0, 1 - z))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                     3       
 | / 2    2\          y       2
 | \y  + z / dy = C + -- + y*z 
 |                    3        
/                              
$$\int \left(y^{2} + z^{2}\right)\, dy = C + \frac{y^{3}}{3} + y z^{2}$$
The answer [src]
       3             
(1 - z)     2        
-------- + z *(1 - z)
   3                 
$$z^{2} \left(1 - z\right) + \frac{\left(1 - z\right)^{3}}{3}$$
=
=
       3             
(1 - z)     2        
-------- + z *(1 - z)
   3                 
$$z^{2} \left(1 - z\right) + \frac{\left(1 - z\right)^{3}}{3}$$
(1 - z)^3/3 + z^2*(1 - z)

    Use the examples entering the upper and lower limits of integration.