2 / | | 2 | y *log(y)*1 dy | / 1
Integral(y^2*log(y)*1, (y, 1, 2))
There are multiple ways to do this integral.
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of a constant is the constant times the variable of integration:
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3 3 | 2 y y *log(y) | y *log(y)*1 dy = C - -- + --------- | 9 3 /
7 8*log(2) - - + -------- 9 3
=
7 8*log(2) - - + -------- 9 3
Use the examples entering the upper and lower limits of integration.