1 / | | y*sin(2*x*y) dy | / 0
Integral(y*sin((2*x)*y), (y, 0, 1))
// 0 for x = 0\
|| |
/ || //sin(2*x*y) \ | // 0 for x = 0\
| || ||---------- for 2*x != 0| | || |
| y*sin(2*x*y) dy = C - |<-|< 2*x | | + y*|<-cos(2*x*y) |
| || || | | ||------------ otherwise|
/ || \\ y otherwise / | \\ 2*x /
||----------------------------- otherwise|
\\ 2*x /
/ cos(2*x) sin(2*x) |- -------- + -------- for And(x > -oo, x < oo, x != 0) | 2*x 2 < 4*x | | 0 otherwise \
=
/ cos(2*x) sin(2*x) |- -------- + -------- for And(x > -oo, x < oo, x != 0) | 2*x 2 < 4*x | | 0 otherwise \
Piecewise((-cos(2*x)/(2*x) + sin(2*x)/(4*x^2), (x > -oo)∧(x < oo)∧(Ne(x, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.