Integral of y*sin(2xy) dy
The solution
The answer (Indefinite)
[src]
// 0 for x = 0\
|| |
/ || //sin(2*x*y) \ | // 0 for x = 0\
| || ||---------- for 2*x != 0| | || |
| y*sin(2*x*y) dy = C - |<-|< 2*x | | + y*|<-cos(2*x*y) |
| || || | | ||------------ otherwise|
/ || \\ y otherwise / | \\ 2*x /
||----------------------------- otherwise|
\\ 2*x /
$$\int y \sin{\left(2 x y \right)}\, dy = C + y \left(\begin{cases} 0 & \text{for}\: x = 0 \\- \frac{\cos{\left(2 x y \right)}}{2 x} & \text{otherwise} \end{cases}\right) - \begin{cases} 0 & \text{for}\: x = 0 \\- \frac{\begin{cases} \frac{\sin{\left(2 x y \right)}}{2 x} & \text{for}\: 2 x \neq 0 \\y & \text{otherwise} \end{cases}}{2 x} & \text{otherwise} \end{cases}$$
/ cos(2*x) sin(2*x)
|- -------- + -------- for And(x > -oo, x < oo, x != 0)
| 2*x 2
< 4*x
|
| 0 otherwise
\
$$\begin{cases} - \frac{\cos{\left(2 x \right)}}{2 x} + \frac{\sin{\left(2 x \right)}}{4 x^{2}} & \text{for}\: x > -\infty \wedge x < \infty \wedge x \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
/ cos(2*x) sin(2*x)
|- -------- + -------- for And(x > -oo, x < oo, x != 0)
| 2*x 2
< 4*x
|
| 0 otherwise
\
$$\begin{cases} - \frac{\cos{\left(2 x \right)}}{2 x} + \frac{\sin{\left(2 x \right)}}{4 x^{2}} & \text{for}\: x > -\infty \wedge x < \infty \wedge x \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((-cos(2*x)/(2*x) + sin(2*x)/(4*x^2), (x > -oo)∧(x < oo)∧(Ne(x, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.