Mister Exam

Other calculators


y=10^-x

Integral of y=10^-x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |    -x   
 |  10   dx
 |         
/          
0          
$$\int\limits_{0}^{1} 10^{- x}\, dx$$
Integral(10^(-x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of an exponential function is itself divided by the natural logarithm of the base.

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                     
 |                   -x 
 |   -x            10   
 | 10   dx = C - -------
 |               log(10)
/                       
$$\int 10^{- x}\, dx = C - \frac{10^{- x}}{\log{\left(10 \right)}}$$
The graph
The answer [src]
    9     
----------
10*log(10)
$$\frac{9}{10 \log{\left(10 \right)}}$$
=
=
    9     
----------
10*log(10)
$$\frac{9}{10 \log{\left(10 \right)}}$$
9/(10*log(10))
Numerical answer [src]
0.390865033712927
0.390865033712927
The graph
Integral of y=10^-x dx

    Use the examples entering the upper and lower limits of integration.