Mister Exam

Integral of xy(z+2)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4               
  /               
 |                
 |  x*y*(z + 2) dx
 |                
/                 
0                 
04xy(z+2)dx\int\limits_{0}^{4} x y \left(z + 2\right)\, dx
Integral((x*y)*(z + 2), (x, 0, 4))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    xy(z+2)dx=(z+2)xydx\int x y \left(z + 2\right)\, dx = \left(z + 2\right) \int x y\, dx

    1. The integral of a constant times a function is the constant times the integral of the function:

      xydx=yxdx\int x y\, dx = y \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x2y2\frac{x^{2} y}{2}

    So, the result is: x2y(z+2)2\frac{x^{2} y \left(z + 2\right)}{2}

  2. Now simplify:

    x2y(z+2)2\frac{x^{2} y \left(z + 2\right)}{2}

  3. Add the constant of integration:

    x2y(z+2)2+constant\frac{x^{2} y \left(z + 2\right)}{2}+ \mathrm{constant}


The answer is:

x2y(z+2)2+constant\frac{x^{2} y \left(z + 2\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                        2        
 |                      y*x *(z + 2)
 | x*y*(z + 2) dx = C + ------------
 |                           2      
/                                   
xy(z+2)dx=C+x2y(z+2)2\int x y \left(z + 2\right)\, dx = C + \frac{x^{2} y \left(z + 2\right)}{2}
The answer [src]
16*y + 8*y*z
8yz+16y8 y z + 16 y
=
=
16*y + 8*y*z
8yz+16y8 y z + 16 y
16*y + 8*y*z

    Use the examples entering the upper and lower limits of integration.