Mister Exam

Integral of xy(z+2)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4               
  /               
 |                
 |  x*y*(z + 2) dx
 |                
/                 
0                 
$$\int\limits_{0}^{4} x y \left(z + 2\right)\, dx$$
Integral((x*y)*(z + 2), (x, 0, 4))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                        2        
 |                      y*x *(z + 2)
 | x*y*(z + 2) dx = C + ------------
 |                           2      
/                                   
$$\int x y \left(z + 2\right)\, dx = C + \frac{x^{2} y \left(z + 2\right)}{2}$$
The answer [src]
16*y + 8*y*z
$$8 y z + 16 y$$
=
=
16*y + 8*y*z
$$8 y z + 16 y$$
16*y + 8*y*z

    Use the examples entering the upper and lower limits of integration.