Mister Exam

Other calculators

Integral of xy^2+(x^2)/8 dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1/2              
  /               
 |                
 |  /        2\   
 |  |   2   x |   
 |  |x*y  + --| dy
 |  \       8 /   
 |                
/                 
0                 
$$\int\limits_{0}^{\frac{1}{2}} \left(\frac{x^{2}}{8} + x y^{2}\right)\, dy$$
Integral(x*y^2 + x^2/8, (y, 0, 1/2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                                 
 | /        2\             3      2
 | |   2   x |          x*y    y*x 
 | |x*y  + --| dy = C + ---- + ----
 | \       8 /           3      8  
 |                                 
/                                  
$$\int \left(\frac{x^{2}}{8} + x y^{2}\right)\, dy = C + \frac{x^{2} y}{8} + \frac{x y^{3}}{3}$$
The answer [src]
 2     
x    x 
-- + --
16   24
$$\frac{x^{2}}{16} + \frac{x}{24}$$
=
=
 2     
x    x 
-- + --
16   24
$$\frac{x^{2}}{16} + \frac{x}{24}$$

    Use the examples entering the upper and lower limits of integration.