Mister Exam

Integral of xsen(2x²) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       /   2\   
 |  x*sin\2*x / dx
 |                
/                 
0                 
01xsin(2x2)dx\int\limits_{0}^{1} x \sin{\left(2 x^{2} \right)}\, dx
Integral(x*sin(2*x^2), (x, 0, 1))
Detail solution
  1. Let u=2x2u = 2 x^{2}.

    Then let du=4xdxdu = 4 x dx and substitute du4\frac{du}{4}:

    sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)du=sin(u)du4\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

    Now substitute uu back in:

    cos(2x2)4- \frac{\cos{\left(2 x^{2} \right)}}{4}

  2. Add the constant of integration:

    cos(2x2)4+constant- \frac{\cos{\left(2 x^{2} \right)}}{4}+ \mathrm{constant}


The answer is:

cos(2x2)4+constant- \frac{\cos{\left(2 x^{2} \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                         /   2\
 |      /   2\          cos\2*x /
 | x*sin\2*x / dx = C - ---------
 |                          4    
/                                
xsin(2x2)dx=Ccos(2x2)4\int x \sin{\left(2 x^{2} \right)}\, dx = C - \frac{\cos{\left(2 x^{2} \right)}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
1   cos(2)
- - ------
4     4   
14cos(2)4\frac{1}{4} - \frac{\cos{\left(2 \right)}}{4}
=
=
1   cos(2)
- - ------
4     4   
14cos(2)4\frac{1}{4} - \frac{\cos{\left(2 \right)}}{4}
1/4 - cos(2)/4
Numerical answer [src]
0.354036709136786
0.354036709136786

    Use the examples entering the upper and lower limits of integration.