Integral of xsen(2x²) dx
The solution
Detail solution
-
Let u=2x2.
Then let du=4xdx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(2x2)
-
Add the constant of integration:
−4cos(2x2)+constant
The answer is:
−4cos(2x2)+constant
The answer (Indefinite)
[src]
/
| / 2\
| / 2\ cos\2*x /
| x*sin\2*x / dx = C - ---------
| 4
/
∫xsin(2x2)dx=C−4cos(2x2)
The graph
41−4cos(2)
=
41−4cos(2)
Use the examples entering the upper and lower limits of integration.