Mister Exam

Integral of xsen(2x²) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       /   2\   
 |  x*sin\2*x / dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} x \sin{\left(2 x^{2} \right)}\, dx$$
Integral(x*sin(2*x^2), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              
 |                         /   2\
 |      /   2\          cos\2*x /
 | x*sin\2*x / dx = C - ---------
 |                          4    
/                                
$$\int x \sin{\left(2 x^{2} \right)}\, dx = C - \frac{\cos{\left(2 x^{2} \right)}}{4}$$
The graph
The answer [src]
1   cos(2)
- - ------
4     4   
$$\frac{1}{4} - \frac{\cos{\left(2 \right)}}{4}$$
=
=
1   cos(2)
- - ------
4     4   
$$\frac{1}{4} - \frac{\cos{\left(2 \right)}}{4}$$
1/4 - cos(2)/4
Numerical answer [src]
0.354036709136786
0.354036709136786

    Use the examples entering the upper and lower limits of integration.