1 / | | x*log(x + 2)*(x - 3) dx | / 0
Integral((x*log(x + 2))*(x - 3), (x, 0, 1))
There are multiple ways to do this integral.
Rewrite the integrand:
Integrate term-by-term:
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of is when :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of is when :
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
So, the result is:
So, the result is:
The result is:
Rewrite the integrand:
Integrate term-by-term:
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of is when :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of is when :
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
So, the result is:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ 3 2 2 3 | 13*x x 13*x 26*log(2 + x) 3*x *log(2 + x) x *log(2 + x) | x*log(x + 2)*(x - 3) dx = C - ---- - -- + ----- + ------------- - --------------- + ------------- | 3 9 12 3 2 3 /
121 26*log(2) 15*log(3) - --- - --------- + --------- 36 3 2
=
121 26*log(2) 15*log(3) - --- - --------- + --------- 36 3 2
-121/36 - 26*log(2)/3 + 15*log(3)/2
Use the examples entering the upper and lower limits of integration.