Mister Exam

Other calculators


xln((1-x)/(1+x))

Integral of xln((1-x)/(1+x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       /1 - x\   
 |  x*log|-----| dx
 |       \1 + x/   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} x \log{\left(\frac{1 - x}{x + 1} \right)}\, dx$$
Integral(x*log((1 - x)/(1 + x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                      2    /  1       x  \
 |                                                      x *log|----- - -----|
 |      /1 - x\          log(1 + x)       log(-1 + x)         \1 + x   1 + x/
 | x*log|-----| dx = C + ---------- - x - ----------- + ---------------------
 |      \1 + x/              2                 2                  2          
 |                                                                           
/                                                                            
$$\int x \log{\left(\frac{1 - x}{x + 1} \right)}\, dx = C + \frac{x^{2} \log{\left(- \frac{x}{x + 1} + \frac{1}{x + 1} \right)}}{2} - x - \frac{\log{\left(x - 1 \right)}}{2} + \frac{\log{\left(x + 1 \right)}}{2}$$
The graph
The answer [src]
-1
$$-1$$
=
=
-1
$$-1$$
-1
Numerical answer [src]
-1.0
-1.0
The graph
Integral of xln((1-x)/(1+x)) dx

    Use the examples entering the upper and lower limits of integration.