Mister Exam

Other calculators

Integral of xln(3x-5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  x*log(3*x - 5) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} x \log{\left(3 x - 5 \right)}\, dx$$
Integral(x*log(3*x - 5), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of is when :

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is .

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                  2    2             
 |                         25*log(-5 + 3*x)   5*x   x    x *log(3*x - 5)
 | x*log(3*x - 5) dx = C - ---------------- - --- - -- + ---------------
 |                                18           6    4           2       
/                                                                       
$$\int x \log{\left(3 x - 5 \right)}\, dx = C + \frac{x^{2} \log{\left(3 x - 5 \right)}}{2} - \frac{x^{2}}{4} - \frac{5 x}{6} - \frac{25 \log{\left(3 x - 5 \right)}}{18}$$
The graph
The answer [src]
  13   8*log(2)   25*log(5)   pi*I
- -- - -------- + --------- + ----
  12      9           18       2  
$$- \frac{13}{12} - \frac{8 \log{\left(2 \right)}}{9} + \frac{25 \log{\left(5 \right)}}{18} + \frac{i \pi}{2}$$
=
=
  13   8*log(2)   25*log(5)   pi*I
- -- - -------- + --------- + ----
  12      9           18       2  
$$- \frac{13}{12} - \frac{8 \log{\left(2 \right)}}{9} + \frac{25 \log{\left(5 \right)}}{18} + \frac{i \pi}{2}$$
-13/12 - 8*log(2)/9 + 25*log(5)/18 + pi*i/2
Numerical answer [src]
(0.535866273438521 + 1.5707963267949j)
(0.535866273438521 + 1.5707963267949j)

    Use the examples entering the upper and lower limits of integration.