Mister Exam

Other calculators


xe^(-9x)

Integral of xe^(-9x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     -9*x   
 |  x*E     dx
 |            
/             
0             
$$\int\limits_{0}^{1} e^{- 9 x} x\, dx$$
Integral(x*E^(-9*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                 
 |                              -9*x
 |    -9*x          (-1 - 9*x)*e    
 | x*E     dx = C + ----------------
 |                         81       
/                                   
$$\int e^{- 9 x} x\, dx = C + \frac{\left(- 9 x - 1\right) e^{- 9 x}}{81}$$
The graph
The answer [src]
         -9
1    10*e  
-- - ------
81     81  
$$\frac{1}{81} - \frac{10}{81 e^{9}}$$
=
=
         -9
1    10*e  
-- - ------
81     81  
$$\frac{1}{81} - \frac{10}{81 e^{9}}$$
1/81 - 10*exp(-9)/81
Numerical answer [src]
0.0123304432340634
0.0123304432340634
The graph
Integral of xe^(-9x) dx

    Use the examples entering the upper and lower limits of integration.