Mister Exam

Integral of xe^(3x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     3*x     
 |  x*e   *1 dx
 |             
/              
0              
01xe3x1dx\int\limits_{0}^{1} x e^{3 x} 1\, dx
Integral(x*E^(3*x)*1, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=e3x\operatorname{dv}{\left(x \right)} = e^{3 x}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. There are multiple ways to do this integral.

      Method #1

      1. Let u=3xu = 3 x.

        Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

        eu9du\int \frac{e^{u}}{9}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          eu3du=eudu3\int \frac{e^{u}}{3}\, du = \frac{\int e^{u}\, du}{3}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu3\frac{e^{u}}{3}

        Now substitute uu back in:

        e3x3\frac{e^{3 x}}{3}

      Method #2

      1. Let u=e3xu = e^{3 x}.

        Then let du=3e3xdxdu = 3 e^{3 x} dx and substitute du3\frac{du}{3}:

        19du\int \frac{1}{9}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          13du=1du3\int \frac{1}{3}\, du = \frac{\int 1\, du}{3}

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          So, the result is: u3\frac{u}{3}

        Now substitute uu back in:

        e3x3\frac{e^{3 x}}{3}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    e3x3dx=e3xdx3\int \frac{e^{3 x}}{3}\, dx = \frac{\int e^{3 x}\, dx}{3}

    1. Let u=3xu = 3 x.

      Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

      eu9du\int \frac{e^{u}}{9}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        eu3du=eudu3\int \frac{e^{u}}{3}\, du = \frac{\int e^{u}\, du}{3}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu3\frac{e^{u}}{3}

      Now substitute uu back in:

      e3x3\frac{e^{3 x}}{3}

    So, the result is: e3x9\frac{e^{3 x}}{9}

  3. Now simplify:

    (3x1)e3x9\frac{\left(3 x - 1\right) e^{3 x}}{9}

  4. Add the constant of integration:

    (3x1)e3x9+constant\frac{\left(3 x - 1\right) e^{3 x}}{9}+ \mathrm{constant}


The answer is:

(3x1)e3x9+constant\frac{\left(3 x - 1\right) e^{3 x}}{9}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                    3*x      3*x
 |    3*x            e      x*e   
 | x*e   *1 dx = C - ---- + ------
 |                    9       3   
/                                 
xe3x1dx=C+xe3x3e3x9\int x e^{3 x} 1\, dx = C + \frac{x e^{3 x}}{3} - \frac{e^{3 x}}{9}
The graph
0.001.000.100.200.300.400.500.600.700.800.9040-20
The answer [src]
       3
1   2*e 
- + ----
9    9  
19+2e39\frac{1}{9} + \frac{2 e^{3}}{9}
=
=
       3
1   2*e 
- + ----
9    9  
19+2e39\frac{1}{9} + \frac{2 e^{3}}{9}
Numerical answer [src]
4.57456376070837
4.57456376070837
The graph
Integral of xe^(3x)dx dx

    Use the examples entering the upper and lower limits of integration.