Mister Exam

Integral of xe^(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     2*x   
 |  x*E    dx
 |           
/            
0            
$$\int\limits_{0}^{1} e^{2 x} x\, dx$$
Integral(x*E^(2*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                               
 |                             2*x
 |    2*x          (-1 + 2*x)*e   
 | x*E    dx = C + ---------------
 |                        4       
/                                 
$$\int e^{2 x} x\, dx = C + \frac{\left(2 x - 1\right) e^{2 x}}{4}$$
The graph
The answer [src]
     2
1   e 
- + --
4   4 
$$\frac{1}{4} + \frac{e^{2}}{4}$$
=
=
     2
1   e 
- + --
4   4 
$$\frac{1}{4} + \frac{e^{2}}{4}$$
1/4 + exp(2)/4
Numerical answer [src]
2.09726402473266
2.09726402473266
The graph
Integral of xe^(2x) dx

    Use the examples entering the upper and lower limits of integration.