Mister Exam

Other calculators

Integral of xdx/sqrt(x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3             
  /             
 |              
 |      x       
 |  --------- dx
 |    _______   
 |  \/ x + 1    
 |              
/               
0               
03xx+1dx\int\limits_{0}^{3} \frac{x}{\sqrt{x + 1}}\, dx
Integral(x/sqrt(x + 1), (x, 0, 3))
Detail solution
  1. Let u=x+1u = \sqrt{x + 1}.

    Then let du=dx2x+1du = \frac{dx}{2 \sqrt{x + 1}} and substitute dudu:

    (2u22)du\int \left(2 u^{2} - 2\right)\, du

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        2u2du=2u2du\int 2 u^{2}\, du = 2 \int u^{2}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        So, the result is: 2u33\frac{2 u^{3}}{3}

      1. The integral of a constant is the constant times the variable of integration:

        (2)du=2u\int \left(-2\right)\, du = - 2 u

      The result is: 2u332u\frac{2 u^{3}}{3} - 2 u

    Now substitute uu back in:

    2(x+1)3232x+1\frac{2 \left(x + 1\right)^{\frac{3}{2}}}{3} - 2 \sqrt{x + 1}

  2. Now simplify:

    2(x2)x+13\frac{2 \left(x - 2\right) \sqrt{x + 1}}{3}

  3. Add the constant of integration:

    2(x2)x+13+constant\frac{2 \left(x - 2\right) \sqrt{x + 1}}{3}+ \mathrm{constant}


The answer is:

2(x2)x+13+constant\frac{2 \left(x - 2\right) \sqrt{x + 1}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                             
 |                                           3/2
 |     x                  _______   2*(x + 1)   
 | --------- dx = C - 2*\/ x + 1  + ------------
 |   _______                             3      
 | \/ x + 1                                     
 |                                              
/                                               
xx+1dx=C+2(x+1)3232x+1\int \frac{x}{\sqrt{x + 1}}\, dx = C + \frac{2 \left(x + 1\right)^{\frac{3}{2}}}{3} - 2 \sqrt{x + 1}
The graph
0.003.000.250.500.751.001.251.501.752.002.252.502.755-5
The answer [src]
8/3
83\frac{8}{3}
=
=
8/3
83\frac{8}{3}
8/3
Numerical answer [src]
2.66666666666667
2.66666666666667

    Use the examples entering the upper and lower limits of integration.