Mister Exam

Other calculators

Integral of xdx/sqrt(x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3             
  /             
 |              
 |      x       
 |  --------- dx
 |    _______   
 |  \/ x + 1    
 |              
/               
0               
$$\int\limits_{0}^{3} \frac{x}{\sqrt{x + 1}}\, dx$$
Integral(x/sqrt(x + 1), (x, 0, 3))
Detail solution
  1. Let .

    Then let and substitute :

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                             
 |                                           3/2
 |     x                  _______   2*(x + 1)   
 | --------- dx = C - 2*\/ x + 1  + ------------
 |   _______                             3      
 | \/ x + 1                                     
 |                                              
/                                               
$$\int \frac{x}{\sqrt{x + 1}}\, dx = C + \frac{2 \left(x + 1\right)^{\frac{3}{2}}}{3} - 2 \sqrt{x + 1}$$
The graph
The answer [src]
8/3
$$\frac{8}{3}$$
=
=
8/3
$$\frac{8}{3}$$
8/3
Numerical answer [src]
2.66666666666667
2.66666666666667

    Use the examples entering the upper and lower limits of integration.