Integral of xdx/(sqrt(1-x^4)) dx
The solution
The answer (Indefinite)
[src]
// / 2\ \
/ ||-I*acosh\x / | 4| |
| ||------------- for |x | > 1|
| x || 2 |
| ----------- dx = C + |< |
| ________ || / 2\ |
| / 4 || asin\x / |
| \/ 1 - x || -------- otherwise |
| \\ 2 /
/
∫1−x4xdx=C+⎩⎨⎧−2iacosh(x2)2asin(x2)forx4>1otherwise
The graph
1
/
|
| / -I*x 4
| |------------ for x > 1
| | _________
| | / 4
| |\/ -1 + x
| < dx
| | x
| |----------- otherwise
| | ________
| | / 4
| \\/ 1 - x
|
/
0
0∫1{−x4−1ix1−x4xforx4>1otherwisedx
=
1
/
|
| / -I*x 4
| |------------ for x > 1
| | _________
| | / 4
| |\/ -1 + x
| < dx
| | x
| |----------- otherwise
| | ________
| | / 4
| \\/ 1 - x
|
/
0
0∫1{−x4−1ix1−x4xforx4>1otherwisedx
Integral(Piecewise((-i*x/sqrt(-1 + x^4), x^4 > 1), (x/sqrt(1 - x^4), True)), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.