Mister Exam

Other calculators


(xdx)/1-(sqrt(x))^4

Integral of (xdx)/1-(sqrt(x))^4 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |  /             4\   
 |  |    1     ___ |   
 |  |x*1*- - \/ x  | dx
 |  \    1         /   
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \left(- \left(\sqrt{x}\right)^{4} + x 1 \cdot 1^{-1}\right)\, dx$$
Integral(x*1/1 - (sqrt(x))^4, (x, 0, 1))
The answer (Indefinite) [src]
  /                                 
 |                                  
 | /             4\           2    3
 | |    1     ___ |          x    x 
 | |x*1*- - \/ x  | dx = C + -- - --
 | \    1         /          2    3 
 |                                  
/                                   
$$\int \left(- \left(\sqrt{x}\right)^{4} + x 1 \cdot 1^{-1}\right)\, dx = C - \frac{x^{3}}{3} + \frac{x^{2}}{2}$$
The graph
The answer [src]
1/6
$$\frac{1}{6}$$
=
=
1/6
$$\frac{1}{6}$$
Numerical answer [src]
0.166666666666667
0.166666666666667
The graph
Integral of (xdx)/1-(sqrt(x))^4 dx

    Use the examples entering the upper and lower limits of integration.