Mister Exam

Integral of x(x-4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  x*(x - 4) dx
 |              
/               
0               
$$\int\limits_{0}^{1} x \left(x - 4\right)\, dx$$
Integral(x*(x - 4), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                           3
 |                       2   x 
 | x*(x - 4) dx = C - 2*x  + --
 |                           3 
/                              
$$\int x \left(x - 4\right)\, dx = C + \frac{x^{3}}{3} - 2 x^{2}$$
The graph
The answer [src]
-5/3
$$- \frac{5}{3}$$
=
=
-5/3
$$- \frac{5}{3}$$
-5/3
Numerical answer [src]
-1.66666666666667
-1.66666666666667
The graph
Integral of x(x-4) dx

    Use the examples entering the upper and lower limits of integration.