Mister Exam

Other calculators

Integral of x^(x+1)/factorial(x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo            
  /            
 |             
 |    x + 1    
 |   x         
 |  -------- dx
 |  (x + 1)!   
 |             
/              
0              
$$\int\limits_{0}^{\infty} \frac{x^{x + 1}}{\left(x + 1\right)!}\, dx$$
Integral(x^(x + 1)/factorial(x + 1), (x, 0, oo))
The answer [src]
 oo            
  /            
 |             
 |    1 + x    
 |   x         
 |  -------- dx
 |  (1 + x)!   
 |             
/              
0              
$$\int\limits_{0}^{\infty} \frac{x^{x + 1}}{\left(x + 1\right)!}\, dx$$
=
=
 oo            
  /            
 |             
 |    1 + x    
 |   x         
 |  -------- dx
 |  (1 + x)!   
 |             
/              
0              
$$\int\limits_{0}^{\infty} \frac{x^{x + 1}}{\left(x + 1\right)!}\, dx$$
Integral(x^(1 + x)/factorial(1 + x), (x, 0, oo))

    Use the examples entering the upper and lower limits of integration.