Integral of x^2sin(x)^2 dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x2 and let dv(x)=sin2(x).
Then du(x)=2x.
To find v(x):
-
Rewrite the integrand:
sin2(x)=21−2cos(2x)
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos(2x))dx=−2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −4sin(2x)
The result is: 2x−4sin(2x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=2x and let dv(x)=2x−sin(2x).
Then du(x)=21.
To find v(x):
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2xdx=2∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: x2
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(2x))dx=−∫sin(2x)dx
-
There are multiple ways to do this integral.
Method #1
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(u)du=2∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −2cos(u)
Now substitute u back in:
−2cos(2x)
Method #2
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(x)cos(x)dx=2∫sin(x)cos(x)dx
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u)du=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
Now substitute u back in:
−2cos2(x)
Method #2
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
Now substitute u back in:
2sin2(x)
So, the result is: −cos2(x)
So, the result is: 2cos(2x)
The result is: x2+2cos(2x)
Now evaluate the sub-integral.
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2x2dx=2∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: 6x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(2x)dx=4∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 8sin(2x)
The result is: 6x3+8sin(2x)
-
Now simplify:
6x3−4x2sin(2x)−4xcos(2x)+8sin(2x)
-
Add the constant of integration:
6x3−4x2sin(2x)−4xcos(2x)+8sin(2x)+constant
The answer is:
6x3−4x2sin(2x)−4xcos(2x)+8sin(2x)+constant
The answer (Indefinite)
[src]
/ / 2 cos(2*x)\
| 3 x*|x + --------|
| 2 2 x sin(2*x) 2 /x sin(2*x)\ \ 2 /
| x *sin (x) dx = C + -- + -------- + x *|- - --------| - -----------------
| 6 8 \2 4 / 2
/
−24(6x2−3)sin(2x)+6xcos(2x)−4x3
The graph
2 2
cos (1) 5*sin (1) cos(1)*sin(1)
- ------- + --------- - -------------
12 12 4
−243sin2+6cos2−4
=
2 2
cos (1) 5*sin (1) cos(1)*sin(1)
- ------- + --------- - -------------
12 12 4
−4sin(1)cos(1)−12cos2(1)+125sin2(1)
Use the examples entering the upper and lower limits of integration.