a*cos(t)
/
|
| 2
| / 2 2\
| \x + y / dy
|
/
a*sin(t)
Integral((x^2 + y^2)^2, (y, a*sin(t), a*cos(t)))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of is when :
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | 2 5 2 3 | / 2 2\ y 4 2*x *y | \x + y / dy = C + -- + y*x + ------- | 5 3 /
5 5 5 5 3 2 3 3 2 3
a *sin (t) a *cos (t) 4 4 2*a *x *sin (t) 2*a *x *cos (t)
- ---------- + ---------- + a*x *cos(t) - a*x *sin(t) - --------------- + ---------------
5 5 3 3
=
5 5 5 5 3 2 3 3 2 3
a *sin (t) a *cos (t) 4 4 2*a *x *sin (t) 2*a *x *cos (t)
- ---------- + ---------- + a*x *cos(t) - a*x *sin(t) - --------------- + ---------------
5 5 3 3
-a^5*sin(t)^5/5 + a^5*cos(t)^5/5 + a*x^4*cos(t) - a*x^4*sin(t) - 2*a^3*x^2*sin(t)^3/3 + 2*a^3*x^2*cos(t)^3/3
Use the examples entering the upper and lower limits of integration.