Mister Exam

Other calculators

Integral of (x^2+5)/(x-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5          
  /          
 |           
 |   2       
 |  x  + 5   
 |  ------ dx
 |  x - 2    
 |           
/            
0            
05x2+5x2dx\int\limits_{0}^{5} \frac{x^{2} + 5}{x - 2}\, dx
Integral((x^2 + 5)/(x - 2), (x, 0, 5))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      x2+5x2=x+2+9x2\frac{x^{2} + 5}{x - 2} = x + 2 + \frac{9}{x - 2}

    2. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      1. The integral of a constant is the constant times the variable of integration:

        2dx=2x\int 2\, dx = 2 x

      1. The integral of a constant times a function is the constant times the integral of the function:

        9x2dx=91x2dx\int \frac{9}{x - 2}\, dx = 9 \int \frac{1}{x - 2}\, dx

        1. Let u=x2u = x - 2.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x2)\log{\left(x - 2 \right)}

        So, the result is: 9log(x2)9 \log{\left(x - 2 \right)}

      The result is: x22+2x+9log(x2)\frac{x^{2}}{2} + 2 x + 9 \log{\left(x - 2 \right)}

    Method #2

    1. Rewrite the integrand:

      x2+5x2=x2x2+5x2\frac{x^{2} + 5}{x - 2} = \frac{x^{2}}{x - 2} + \frac{5}{x - 2}

    2. Integrate term-by-term:

      1. Rewrite the integrand:

        x2x2=x+2+4x2\frac{x^{2}}{x - 2} = x + 2 + \frac{4}{x - 2}

      2. Integrate term-by-term:

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        1. The integral of a constant is the constant times the variable of integration:

          2dx=2x\int 2\, dx = 2 x

        1. The integral of a constant times a function is the constant times the integral of the function:

          4x2dx=41x2dx\int \frac{4}{x - 2}\, dx = 4 \int \frac{1}{x - 2}\, dx

          1. Let u=x2u = x - 2.

            Then let du=dxdu = dx and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(x2)\log{\left(x - 2 \right)}

          So, the result is: 4log(x2)4 \log{\left(x - 2 \right)}

        The result is: x22+2x+4log(x2)\frac{x^{2}}{2} + 2 x + 4 \log{\left(x - 2 \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        5x2dx=51x2dx\int \frac{5}{x - 2}\, dx = 5 \int \frac{1}{x - 2}\, dx

        1. Let u=x2u = x - 2.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x2)\log{\left(x - 2 \right)}

        So, the result is: 5log(x2)5 \log{\left(x - 2 \right)}

      The result is: x22+2x+5log(x2)+4log(x2)\frac{x^{2}}{2} + 2 x + 5 \log{\left(x - 2 \right)} + 4 \log{\left(x - 2 \right)}

  2. Add the constant of integration:

    x22+2x+9log(x2)+constant\frac{x^{2}}{2} + 2 x + 9 \log{\left(x - 2 \right)}+ \mathrm{constant}


The answer is:

x22+2x+9log(x2)+constant\frac{x^{2}}{2} + 2 x + 9 \log{\left(x - 2 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                        
 |                                         
 |  2               2                      
 | x  + 5          x                       
 | ------ dx = C + -- + 2*x + 9*log(-2 + x)
 | x - 2           2                       
 |                                         
/                                          
x2+5x2dx=C+x22+2x+9log(x2)\int \frac{x^{2} + 5}{x - 2}\, dx = C + \frac{x^{2}}{2} + 2 x + 9 \log{\left(x - 2 \right)}
The graph
0.05.00.51.01.52.02.53.03.54.04.5-200000200000
The answer [src]
nan
NaN\text{NaN}
=
=
nan
NaN\text{NaN}
nan
Numerical answer [src]
56.7736719821704
56.7736719821704

    Use the examples entering the upper and lower limits of integration.