Mister Exam

Other calculators

Integral of (x^2+5)/(x-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5          
  /          
 |           
 |   2       
 |  x  + 5   
 |  ------ dx
 |  x - 2    
 |           
/            
0            
$$\int\limits_{0}^{5} \frac{x^{2} + 5}{x - 2}\, dx$$
Integral((x^2 + 5)/(x - 2), (x, 0, 5))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        So, the result is:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of a constant is the constant times the variable of integration:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is .

            Now substitute back in:

          So, the result is:

        The result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                        
 |                                         
 |  2               2                      
 | x  + 5          x                       
 | ------ dx = C + -- + 2*x + 9*log(-2 + x)
 | x - 2           2                       
 |                                         
/                                          
$$\int \frac{x^{2} + 5}{x - 2}\, dx = C + \frac{x^{2}}{2} + 2 x + 9 \log{\left(x - 2 \right)}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
56.7736719821704
56.7736719821704

    Use the examples entering the upper and lower limits of integration.