Mister Exam

Other calculators


x^2+6x+8

Integral of x^2+6x+8 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  8                  
  /                  
 |                   
 |  / 2          \   
 |  \x  + 6*x + 8/ dx
 |                   
/                    
2                    
28(x2+6x+8)dx\int\limits_{2}^{8} \left(x^{2} + 6 x + 8\right)\, dx
Integral(x^2 + 6*x + 8, (x, 2, 8))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      6xdx=6xdx\int 6 x\, dx = 6 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 3x23 x^{2}

    1. The integral of a constant is the constant times the variable of integration:

      8dx=8x\int 8\, dx = 8 x

    The result is: x33+3x2+8x\frac{x^{3}}{3} + 3 x^{2} + 8 x

  2. Now simplify:

    x(x2+9x+24)3\frac{x \left(x^{2} + 9 x + 24\right)}{3}

  3. Add the constant of integration:

    x(x2+9x+24)3+constant\frac{x \left(x^{2} + 9 x + 24\right)}{3}+ \mathrm{constant}


The answer is:

x(x2+9x+24)3+constant\frac{x \left(x^{2} + 9 x + 24\right)}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                       3
 | / 2          \             2         x 
 | \x  + 6*x + 8/ dx = C + 3*x  + 8*x + --
 |                                      3 
/                                         
(x2+6x+8)dx=C+x33+3x2+8x\int \left(x^{2} + 6 x + 8\right)\, dx = C + \frac{x^{3}}{3} + 3 x^{2} + 8 x
The graph
2.08.02.53.03.54.04.55.05.56.06.57.07.50500
The answer [src]
396
396396
=
=
396
396396
Numerical answer [src]
396.0
396.0
The graph
Integral of x^2+6x+8 dx

    Use the examples entering the upper and lower limits of integration.