Integral of x^2*exp(3*x) dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x2 and let dv(x)=e3x.
Then du(x)=2x.
To find v(x):
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫3eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3x
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=32x and let dv(x)=e3x.
Then du(x)=32.
To find v(x):
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫3eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3x
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫92e3xdx=92∫e3xdx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫3eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3x
So, the result is: 272e3x
-
Now simplify:
27(9x2−6x+2)e3x
-
Add the constant of integration:
27(9x2−6x+2)e3x+constant
The answer is:
27(9x2−6x+2)e3x+constant
The answer (Indefinite)
[src]
/
| 3*x 3*x 2 3*x
| 2 3*x 2*e 2*x*e x *e
| x *e dx = C + ------ - -------- + -------
| 27 9 3
/
∫x2e3xdx=C+3x2e3x−92xe3x+272e3x
The graph
3
2 5*e
- -- + ----
27 27
−272+275e3
=
3
2 5*e
- -- + ----
27 27
−272+275e3
Use the examples entering the upper and lower limits of integration.