1 / | | 2 | -a*x | ----- | 2 2 | x *e dx | / 0
Integral(x^2*exp(((-a)*x^2)/2), (x, 0, 1))
Use integration by parts:
Let and let .
Then .
To find :
ErfRule(a=-a/2, b=0, c=0, context=exp(-a*x**2/2), symbol=x)
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | / 2 \ _____ / ___\ | 2 | / ___ ___\ / ___ ___\ -a*x | ___ ____ 2 / -1 |a*x*\/ 2 | | -a*x | |I*x*\/ 2 *\/ a | 2 |I*x*\/ 2 *\/ a | ------| \/ 2 *\/ pi *x * / --- *erfi|---------| | ----- _____ |erfi|---------------| x *erfi|---------------| ___ 2 | \/ a | ____| | 2 2 ___ ____ / -1 | \ 2 / \ 2 / I*x*\/ 2 *e | \ 2*\/ -a / | x *e dx = C + \/ 2 *\/ pi * / --- *|--------------------- - ------------------------ - -----------------| - ----------------------------------------- | \/ a | 2*a 2 ____ ___ | 2 / \ 2*\/ pi *\/ a /
/ -a / ___ ___\ | --- ___ ____ |\/ 2 *\/ a | | 2 \/ 2 *\/ pi *erf|-----------| | e \ 2 / <- ---- + ----------------------------- for And(a > -oo, a < oo, a != 0) | a 3/2 | 2*a | \ 1/3 otherwise
=
/ -a / ___ ___\ | --- ___ ____ |\/ 2 *\/ a | | 2 \/ 2 *\/ pi *erf|-----------| | e \ 2 / <- ---- + ----------------------------- for And(a > -oo, a < oo, a != 0) | a 3/2 | 2*a | \ 1/3 otherwise
Piecewise((-exp(-a/2)/a + sqrt(2)*sqrt(pi)*erf(sqrt(2)*sqrt(a)/2)/(2*a^(3/2)), (a > -oo)∧(a < oo)∧(Ne(a, 0))), (1/3, True))
Use the examples entering the upper and lower limits of integration.