Mister Exam

Other calculators

Integral of x^2*dx/(sqrt(x)-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |       2      
 |      x       
 |  --------- dx
 |    ___       
 |  \/ x  - 1   
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{x^{2}}{\sqrt{x} - 1}\, dx$$
Integral(x^2/(sqrt(x) - 1), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of is when :

        1. The integral of is when :

        1. The integral of is when :

        1. The integral of a constant is the constant times the variable of integration:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        The result is:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                         
 |                                                                          
 |      2                  2                                    3/2      5/2
 |     x                  x        ___        /       ___\   2*x      2*x   
 | --------- dx = C + x + -- + 2*\/ x  + 2*log\-1 + \/ x / + ------ + ------
 |   ___                  2                                    3        5   
 | \/ x  - 1                                                                
 |                                                                          
/                                                                           
$$\int \frac{x^{2}}{\sqrt{x} - 1}\, dx = C + \frac{2 x^{\frac{5}{2}}}{5} + \frac{2 x^{\frac{3}{2}}}{3} + 2 \sqrt{x} + \frac{x^{2}}{2} + x + 2 \log{\left(\sqrt{x} - 1 \right)}$$
The graph
The answer [src]
-oo - 2*pi*I
$$-\infty - 2 i \pi$$
=
=
-oo - 2*pi*I
$$-\infty - 2 i \pi$$
-oo - 2*pi*i
Numerical answer [src]
-85.0014007435013
-85.0014007435013

    Use the examples entering the upper and lower limits of integration.