Mister Exam

Other calculators

Integral of x^2*cos7x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 157              
 ---              
 100              
  /               
 |                
 |   2            
 |  x *cos(7*x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{\frac{157}{100}} x^{2} \cos{\left(7 x \right)}\, dx$$
Integral(x^2*cos(7*x), (x, 0, 157/100))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  3. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                    2                        
 |  2                   2*sin(7*x)   x *sin(7*x)   2*x*cos(7*x)
 | x *cos(7*x) dx = C - ---------- + ----------- + ------------
 |                         343            7             49     
/                                                              
$$\int x^{2} \cos{\left(7 x \right)}\, dx = C + \frac{x^{2} \sin{\left(7 x \right)}}{7} + \frac{2 x \cos{\left(7 x \right)}}{49} - \frac{2 \sin{\left(7 x \right)}}{343}$$
The graph
The answer [src]
       /1099\              /1099\
157*cos|----|   1187801*sin|----|
       \100 /              \100 /
------------- + -----------------
     2450            3430000     
$$\frac{1187801 \sin{\left(\frac{1099}{100} \right)}}{3430000} + \frac{157 \cos{\left(\frac{1099}{100} \right)}}{2450}$$
=
=
       /1099\              /1099\
157*cos|----|   1187801*sin|----|
       \100 /              \100 /
------------- + -----------------
     2450            3430000     
$$\frac{1187801 \sin{\left(\frac{1099}{100} \right)}}{3430000} + \frac{157 \cos{\left(\frac{1099}{100} \right)}}{2450}$$
157*cos(1099/100)/2450 + 1187801*sin(1099/100)/3430000
Numerical answer [src]
-0.34664949505188
-0.34664949505188

    Use the examples entering the upper and lower limits of integration.