157 --- 100 / | | 2 | x *cos(7*x) dx | / 0
Integral(x^2*cos(7*x), (x, 0, 157/100))
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
Add the constant of integration:
The answer is:
/ | 2 | 2 2*sin(7*x) x *sin(7*x) 2*x*cos(7*x) | x *cos(7*x) dx = C - ---------- + ----------- + ------------ | 343 7 49 /
/1099\ /1099\
157*cos|----| 1187801*sin|----|
\100 / \100 /
------------- + -----------------
2450 3430000
=
/1099\ /1099\
157*cos|----| 1187801*sin|----|
\100 / \100 /
------------- + -----------------
2450 3430000
157*cos(1099/100)/2450 + 1187801*sin(1099/100)/3430000
Use the examples entering the upper and lower limits of integration.