Mister Exam

Other calculators

Integral of x^2*cos(4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*p              
  /               
 |                
 |   2            
 |  x *cos(4*x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{2 p} x^{2} \cos{\left(4 x \right)}\, dx$$
Integral(x^2*cos(4*x), (x, 0, 2*p))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  3. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                        
 |                                  2                      
 |  2                   sin(4*x)   x *sin(4*x)   x*cos(4*x)
 | x *cos(4*x) dx = C - -------- + ----------- + ----------
 |                         32           4            8     
/                                                          
$$\int x^{2} \cos{\left(4 x \right)}\, dx = C + \frac{x^{2} \sin{\left(4 x \right)}}{4} + \frac{x \cos{\left(4 x \right)}}{8} - \frac{\sin{\left(4 x \right)}}{32}$$
The answer [src]
  sin(8*p)    2            p*cos(8*p)
- -------- + p *sin(8*p) + ----------
     32                        4     
$$p^{2} \sin{\left(8 p \right)} + \frac{p \cos{\left(8 p \right)}}{4} - \frac{\sin{\left(8 p \right)}}{32}$$
=
=
  sin(8*p)    2            p*cos(8*p)
- -------- + p *sin(8*p) + ----------
     32                        4     
$$p^{2} \sin{\left(8 p \right)} + \frac{p \cos{\left(8 p \right)}}{4} - \frac{\sin{\left(8 p \right)}}{32}$$

    Use the examples entering the upper and lower limits of integration.