Integral of x^2*a^x*dx dx
The solution
The answer (Indefinite)
[src]
// x / 2 2 \ \
||a *\2 + x *log (a) - 2*x*log(a)/ 3 |
/ ||-------------------------------- for log (a) != 0|
| || 3 |
| 2 x || log (a) |
| x *a dx = C + |< |
| || 3 |
/ || x |
|| -- otherwise |
|| 3 |
\\ /
$$\int a^{x} x^{2}\, dx = C + \begin{cases} \frac{a^{x} \left(x^{2} \log{\left(a \right)}^{2} - 2 x \log{\left(a \right)} + 2\right)}{\log{\left(a \right)}^{3}} & \text{for}\: \log{\left(a \right)}^{3} \neq 0 \\\frac{x^{3}}{3} & \text{otherwise} \end{cases}$$
/ / 2 \
| 2 a*\2 + log (a) - 2*log(a)/
|- ------- + -------------------------- for Or(And(a >= 0, a < 1), a > 1)
< 3 3
| log (a) log (a)
|
\ 1/3 otherwise
$$\begin{cases} \frac{a \left(\log{\left(a \right)}^{2} - 2 \log{\left(a \right)} + 2\right)}{\log{\left(a \right)}^{3}} - \frac{2}{\log{\left(a \right)}^{3}} & \text{for}\: \left(a \geq 0 \wedge a < 1\right) \vee a > 1 \\\frac{1}{3} & \text{otherwise} \end{cases}$$
=
/ / 2 \
| 2 a*\2 + log (a) - 2*log(a)/
|- ------- + -------------------------- for Or(And(a >= 0, a < 1), a > 1)
< 3 3
| log (a) log (a)
|
\ 1/3 otherwise
$$\begin{cases} \frac{a \left(\log{\left(a \right)}^{2} - 2 \log{\left(a \right)} + 2\right)}{\log{\left(a \right)}^{3}} - \frac{2}{\log{\left(a \right)}^{3}} & \text{for}\: \left(a \geq 0 \wedge a < 1\right) \vee a > 1 \\\frac{1}{3} & \text{otherwise} \end{cases}$$
Piecewise((-2/log(a)^3 + a*(2 + log(a)^2 - 2*log(a))/log(a)^3, (a > 1)∨((a >= 0)∧(a < 1))), (1/3, True))
Use the examples entering the upper and lower limits of integration.