Mister Exam

Other calculators

Integral of x^2-11 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  7             
  /             
 |              
 |  / 2     \   
 |  \x  - 11/ dx
 |              
/               
-7              
77(x211)dx\int\limits_{-7}^{7} \left(x^{2} - 11\right)\, dx
Integral(x^2 - 11, (x, -7, 7))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

    1. The integral of a constant is the constant times the variable of integration:

      (11)dx=11x\int \left(-11\right)\, dx = - 11 x

    The result is: x3311x\frac{x^{3}}{3} - 11 x

  2. Now simplify:

    x(x233)3\frac{x \left(x^{2} - 33\right)}{3}

  3. Add the constant of integration:

    x(x233)3+constant\frac{x \left(x^{2} - 33\right)}{3}+ \mathrm{constant}


The answer is:

x(x233)3+constant\frac{x \left(x^{2} - 33\right)}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                            3
 | / 2     \                 x 
 | \x  - 11/ dx = C - 11*x + --
 |                           3 
/                              
(x211)dx=C+x3311x\int \left(x^{2} - 11\right)\, dx = C + \frac{x^{3}}{3} - 11 x
The graph
70123456-7-6-5-4-3-2-1-100100
The answer [src]
224/3
2243\frac{224}{3}
=
=
224/3
2243\frac{224}{3}
224/3
Numerical answer [src]
74.6666666666667
74.6666666666667

    Use the examples entering the upper and lower limits of integration.