Mister Exam

Other calculators

Integral of x^2-5x+2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2281                    
    ----                    
    500                     
      /                     
     |                      
     |     / 2          \   
     |     \x  - 5*x + 2/ dx
     |                      
    /                       
      ____                  
5   \/ 17                   
- - ------                  
2     2                     
$$\int\limits_{\frac{5}{2} - \frac{\sqrt{17}}{2}}^{\frac{2281}{500}} \left(\left(x^{2} - 5 x\right) + 2\right)\, dx$$
Integral(x^2 - 5*x + 2, (x, 5/2 - sqrt(17)/2, 2281/500))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                  2    3
 | / 2          \                5*x    x 
 | \x  - 5*x + 2/ dx = C + 2*x - ---- + --
 |                                2     3 
/                                         
$$\int \left(\left(x^{2} - 5 x\right) + 2\right)\, dx = C + \frac{x^{3}}{3} - \frac{5 x^{2}}{2} + 2 x$$
The graph
The answer [src]
                                    3                 2
                        /      ____\      /      ____\ 
                        |5   \/ 17 |      |5   \/ 17 | 
                        |- - ------|    5*|- - ------| 
  6096649709     ____   \2     2   /      \2     2   / 
- ---------- + \/ 17  - ------------- + ---------------
  375000000                   3                2       
$$- \frac{6096649709}{375000000} - \frac{\left(\frac{5}{2} - \frac{\sqrt{17}}{2}\right)^{3}}{3} + \frac{5 \left(\frac{5}{2} - \frac{\sqrt{17}}{2}\right)^{2}}{2} + \sqrt{17}$$
=
=
                                    3                 2
                        /      ____\      /      ____\ 
                        |5   \/ 17 |      |5   \/ 17 | 
                        |- - ------|    5*|- - ------| 
  6096649709     ____   \2     2   /      \2     2   / 
- ---------- + \/ 17  - ------------- + ---------------
  375000000                   3                2       
$$- \frac{6096649709}{375000000} - \frac{\left(\frac{5}{2} - \frac{\sqrt{17}}{2}\right)^{3}}{3} + \frac{5 \left(\frac{5}{2} - \frac{\sqrt{17}}{2}\right)^{2}}{2} + \sqrt{17}$$
-6096649709/375000000 + sqrt(17) - (5/2 - sqrt(17)/2)^3/3 + 5*(5/2 - sqrt(17)/2)^2/2
Numerical answer [src]
-11.682132193625
-11.682132193625

    Use the examples entering the upper and lower limits of integration.