Mister Exam

Other calculators


x^2-5x+4

Integral of x^2-5x+4 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  / 2          \   
 |  \x  - 5*x + 4/ dx
 |                   
/                    
0                    
01(x25x+4)dx\int\limits_{0}^{1} \left(x^{2} - 5 x + 4\right)\, dx
Integral(x^2 - 5*x + 4, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (5x)dx=5xdx\int \left(- 5 x\right)\, dx = - \int 5 x\, dx

      1. The integral of a constant times a function is the constant times the integral of the function:

        5xdx=5xdx\int 5 x\, dx = 5 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 5x22\frac{5 x^{2}}{2}

      So, the result is: 5x22- \frac{5 x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      4dx=4x\int 4\, dx = 4 x

    The result is: x335x22+4x\frac{x^{3}}{3} - \frac{5 x^{2}}{2} + 4 x

  2. Now simplify:

    x(2x215x+24)6\frac{x \left(2 x^{2} - 15 x + 24\right)}{6}

  3. Add the constant of integration:

    x(2x215x+24)6+constant\frac{x \left(2 x^{2} - 15 x + 24\right)}{6}+ \mathrm{constant}


The answer is:

x(2x215x+24)6+constant\frac{x \left(2 x^{2} - 15 x + 24\right)}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                  2    3
 | / 2          \                5*x    x 
 | \x  - 5*x + 4/ dx = C + 4*x - ---- + --
 |                                2     3 
/                                         
x335x22+4x{{x^3}\over{3}}-{{5\,x^2}\over{2}}+4\,x
The graph
0.001.000.100.200.300.400.500.600.700.800.9005
The answer [src]
11/6
116{{11}\over{6}}
=
=
11/6
116\frac{11}{6}
Numerical answer [src]
1.83333333333333
1.83333333333333
The graph
Integral of x^2-5x+4 dx

    Use the examples entering the upper and lower limits of integration.