Mister Exam

Other calculators

Integral of (x^2-3x)lnxdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  / 2      \          
 |  \x  - 3*x/*log(x) dx
 |                      
/                       
0                       
01(x23x)log(x)dx\int\limits_{0}^{1} \left(x^{2} - 3 x\right) \log{\left(x \right)}\, dx
Integral((x^2 - 3*x)*log(x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(x)u = \log{\left(x \right)}.

      Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

      (ue3u3ue2u)du\int \left(u e^{3 u} - 3 u e^{2 u}\right)\, du

      1. Integrate term-by-term:

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=e3u\operatorname{dv}{\left(u \right)} = e^{3 u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. Let u=3uu = 3 u.

            Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

            eu3du\int \frac{e^{u}}{3}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu3\frac{e^{u}}{3}

            Now substitute uu back in:

            e3u3\frac{e^{3 u}}{3}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          e3u3du=e3udu3\int \frac{e^{3 u}}{3}\, du = \frac{\int e^{3 u}\, du}{3}

          1. Let u=3uu = 3 u.

            Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

            eu3du\int \frac{e^{u}}{3}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu3\frac{e^{u}}{3}

            Now substitute uu back in:

            e3u3\frac{e^{3 u}}{3}

          So, the result is: e3u9\frac{e^{3 u}}{9}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (3ue2u)du=3ue2udu\int \left(- 3 u e^{2 u}\right)\, du = - 3 \int u e^{2 u}\, du

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

            Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

            To find v(u)v{\left(u \right)}:

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu2du\int \frac{e^{u}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                False\text{False}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            Now evaluate the sub-integral.

          2. The integral of a constant times a function is the constant times the integral of the function:

            e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu2du\int \frac{e^{u}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                False\text{False}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            So, the result is: e2u4\frac{e^{2 u}}{4}

          So, the result is: 3ue2u2+3e2u4- \frac{3 u e^{2 u}}{2} + \frac{3 e^{2 u}}{4}

        The result is: ue3u33ue2u2e3u9+3e2u4\frac{u e^{3 u}}{3} - \frac{3 u e^{2 u}}{2} - \frac{e^{3 u}}{9} + \frac{3 e^{2 u}}{4}

      Now substitute uu back in:

      x3log(x)3x393x2log(x)2+3x24\frac{x^{3} \log{\left(x \right)}}{3} - \frac{x^{3}}{9} - \frac{3 x^{2} \log{\left(x \right)}}{2} + \frac{3 x^{2}}{4}

    Method #2

    1. Rewrite the integrand:

      (x23x)log(x)=x2log(x)3xlog(x)\left(x^{2} - 3 x\right) \log{\left(x \right)} = x^{2} \log{\left(x \right)} - 3 x \log{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=log(x)u = \log{\left(x \right)}.

        Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

        ue3udu\int u e^{3 u}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=e3u\operatorname{dv}{\left(u \right)} = e^{3 u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. Let u=3uu = 3 u.

            Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

            eu3du\int \frac{e^{u}}{3}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu3\frac{e^{u}}{3}

            Now substitute uu back in:

            e3u3\frac{e^{3 u}}{3}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          e3u3du=e3udu3\int \frac{e^{3 u}}{3}\, du = \frac{\int e^{3 u}\, du}{3}

          1. Let u=3uu = 3 u.

            Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

            eu3du\int \frac{e^{u}}{3}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu3\frac{e^{u}}{3}

            Now substitute uu back in:

            e3u3\frac{e^{3 u}}{3}

          So, the result is: e3u9\frac{e^{3 u}}{9}

        Now substitute uu back in:

        x3log(x)3x39\frac{x^{3} \log{\left(x \right)}}{3} - \frac{x^{3}}{9}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3xlog(x))dx=3xlog(x)dx\int \left(- 3 x \log{\left(x \right)}\right)\, dx = - 3 \int x \log{\left(x \right)}\, dx

        1. Let u=log(x)u = \log{\left(x \right)}.

          Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

          ue2udu\int u e^{2 u}\, du

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

            Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

            To find v(u)v{\left(u \right)}:

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu2du\int \frac{e^{u}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                False\text{False}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            Now evaluate the sub-integral.

          2. The integral of a constant times a function is the constant times the integral of the function:

            e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu2du\int \frac{e^{u}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                False\text{False}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            So, the result is: e2u4\frac{e^{2 u}}{4}

          Now substitute uu back in:

          x2log(x)2x24\frac{x^{2} \log{\left(x \right)}}{2} - \frac{x^{2}}{4}

        So, the result is: 3x2log(x)2+3x24- \frac{3 x^{2} \log{\left(x \right)}}{2} + \frac{3 x^{2}}{4}

      The result is: x3log(x)3x393x2log(x)2+3x24\frac{x^{3} \log{\left(x \right)}}{3} - \frac{x^{3}}{9} - \frac{3 x^{2} \log{\left(x \right)}}{2} + \frac{3 x^{2}}{4}

    Method #3

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=x23x\operatorname{dv}{\left(x \right)} = x^{2} - 3 x.

      Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

      To find v(x)v{\left(x \right)}:

      1. Rewrite the integrand:

        x(x3)=x23xx \left(x - 3\right) = x^{2} - 3 x

      2. Integrate term-by-term:

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (3x)dx=3xdx\int \left(- 3 x\right)\, dx = - 3 \int x\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          So, the result is: 3x22- \frac{3 x^{2}}{2}

        The result is: x333x22\frac{x^{3}}{3} - \frac{3 x^{2}}{2}

      Now evaluate the sub-integral.

    2. Rewrite the integrand:

      x333x22x=x233x2\frac{\frac{x^{3}}{3} - \frac{3 x^{2}}{2}}{x} = \frac{x^{2}}{3} - \frac{3 x}{2}

    3. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        x23dx=x2dx3\int \frac{x^{2}}{3}\, dx = \frac{\int x^{2}\, dx}{3}

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: x39\frac{x^{3}}{9}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3x2)dx=3xdx2\int \left(- \frac{3 x}{2}\right)\, dx = - \frac{3 \int x\, dx}{2}

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 3x24- \frac{3 x^{2}}{4}

      The result is: x393x24\frac{x^{3}}{9} - \frac{3 x^{2}}{4}

    Method #4

    1. Rewrite the integrand:

      (x23x)log(x)=x2log(x)3xlog(x)\left(x^{2} - 3 x\right) \log{\left(x \right)} = x^{2} \log{\left(x \right)} - 3 x \log{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=log(x)u = \log{\left(x \right)}.

        Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

        ue3udu\int u e^{3 u}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=e3u\operatorname{dv}{\left(u \right)} = e^{3 u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. Let u=3uu = 3 u.

            Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

            eu3du\int \frac{e^{u}}{3}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu3\frac{e^{u}}{3}

            Now substitute uu back in:

            e3u3\frac{e^{3 u}}{3}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          e3u3du=e3udu3\int \frac{e^{3 u}}{3}\, du = \frac{\int e^{3 u}\, du}{3}

          1. Let u=3uu = 3 u.

            Then let du=3dudu = 3 du and substitute du3\frac{du}{3}:

            eu3du\int \frac{e^{u}}{3}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu3\frac{e^{u}}{3}

            Now substitute uu back in:

            e3u3\frac{e^{3 u}}{3}

          So, the result is: e3u9\frac{e^{3 u}}{9}

        Now substitute uu back in:

        x3log(x)3x39\frac{x^{3} \log{\left(x \right)}}{3} - \frac{x^{3}}{9}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3xlog(x))dx=3xlog(x)dx\int \left(- 3 x \log{\left(x \right)}\right)\, dx = - 3 \int x \log{\left(x \right)}\, dx

        1. Let u=log(x)u = \log{\left(x \right)}.

          Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

          ue2udu\int u e^{2 u}\, du

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

            Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

            To find v(u)v{\left(u \right)}:

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu2du\int \frac{e^{u}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                False\text{False}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            Now evaluate the sub-integral.

          2. The integral of a constant times a function is the constant times the integral of the function:

            e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu2du\int \frac{e^{u}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                False\text{False}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            So, the result is: e2u4\frac{e^{2 u}}{4}

          Now substitute uu back in:

          x2log(x)2x24\frac{x^{2} \log{\left(x \right)}}{2} - \frac{x^{2}}{4}

        So, the result is: 3x2log(x)2+3x24- \frac{3 x^{2} \log{\left(x \right)}}{2} + \frac{3 x^{2}}{4}

      The result is: x3log(x)3x393x2log(x)2+3x24\frac{x^{3} \log{\left(x \right)}}{3} - \frac{x^{3}}{9} - \frac{3 x^{2} \log{\left(x \right)}}{2} + \frac{3 x^{2}}{4}

  2. Now simplify:

    x2(12xlog(x)4x54log(x)+27)36\frac{x^{2} \left(12 x \log{\left(x \right)} - 4 x - 54 \log{\left(x \right)} + 27\right)}{36}

  3. Add the constant of integration:

    x2(12xlog(x)4x54log(x)+27)36+constant\frac{x^{2} \left(12 x \log{\left(x \right)} - 4 x - 54 \log{\left(x \right)} + 27\right)}{36}+ \mathrm{constant}


The answer is:

x2(12xlog(x)4x54log(x)+27)36+constant\frac{x^{2} \left(12 x \log{\left(x \right)} - 4 x - 54 \log{\left(x \right)} + 27\right)}{36}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                              
 |                             3      2      2           3       
 | / 2      \                 x    3*x    3*x *log(x)   x *log(x)
 | \x  - 3*x/*log(x) dx = C - -- + ---- - ----------- + ---------
 |                            9     4          2            3    
/                                                                
(x23x)log(x)dx=C+x3log(x)3x393x2log(x)2+3x24\int \left(x^{2} - 3 x\right) \log{\left(x \right)}\, dx = C + \frac{x^{3} \log{\left(x \right)}}{3} - \frac{x^{3}}{9} - \frac{3 x^{2} \log{\left(x \right)}}{2} + \frac{3 x^{2}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.9001
The answer [src]
23
--
36
2336\frac{23}{36}
=
=
23
--
36
2336\frac{23}{36}
23/36
Numerical answer [src]
0.638888888888889
0.638888888888889

    Use the examples entering the upper and lower limits of integration.